Chart of Properties

Property	Description	Algebra	Example
Commutative Property of Addition	the order in which you add two numbers doesn't matter	$a+b=b+a$	$x+5=5+x$
Commutative Property of Multiplication	the order in which you multiply two numbers doesn't matter	$\mathrm{a} \cdot \mathrm{b}=\mathrm{b} \cdot \mathrm{a}$	$(x)(3)=3 x$
Associative Property of Addition	the grouping of three numbers in a sum doesn't matter	$(\mathrm{a}+\mathrm{b})+\mathrm{c}=\mathrm{a}+(\mathrm{b}+\mathrm{c})$	$(2 x+4)+1=2 x+(4+1)$
Associative Property of Multiplication	the grouping of three numbers in a product doesn't matter	$(\mathrm{a} \cdot \mathrm{b}) \cdot \mathrm{c}=\mathrm{a} \cdot(\mathrm{b} \cdot \mathrm{c})$	$(2 x) y=2(x y)$
Identity Property of Addition	the sum of a number and 0 is the number	$a+0=a$	$-6+0=-6$
Identity Property of Multiplication	the product of a number and 1 is the number	$a \cdot 1=a$	$1\left(\frac{3}{4}\right)=\frac{3}{4}$
Inverse Property of Addition	the sum of a number and its opposite is zero	$a+(-a)=0$	$12+(-12)=0$
Inverse Property of Multiplication	the product of a non-zero number and its multiplicative inverse is 1	$\mathrm{a} \cdot \frac{1}{a}=1$	$3 \cdot \frac{1}{3}=1$
Multiplicative Property of 0	the product of a number and 0 is 0	$a \cdot 0=0$	$15 \cdot 0=0$
Addition Property of Equality	any number added to one side of an equation must also be added to the other side	$\begin{aligned} a & =b \\ a+c & =b+c \end{aligned}$	$\begin{aligned} x-4 & =16 \\ x-4+4 & =16+4 \end{aligned}$
Subtraction Property of Equality	any number subtracted from one side of an equation must also be subtracted from the other	$\begin{aligned} a & =b \\ a-c & =b-c \end{aligned}$	$\begin{aligned} x+17 & =-2 \\ x+17-17 & =-2-17 \end{aligned}$
Multiplication Property of Equality	any number multiplied on one side of the equation must also be multiplied on the other	$\begin{aligned} a & =b \\ a \cdot c & =b \cdot c \end{aligned}$	$\begin{aligned} \frac{x}{5} & =12 \\ \left(\frac{x}{5}\right)(5) & =(12)(5) \end{aligned}$
Division Property of Equality	any number divided from one side of the equation must also be divided from the other	$\begin{aligned} & a=b \\ & \frac{a}{c}=\frac{b}{c} \end{aligned}$	$\begin{aligned} & -3 x=57 \\ & \frac{-3 x}{-3}=\frac{57}{-3} \end{aligned}$
Transitive Property of Equality		$\begin{gathered} \text { If } \mathrm{a}=\mathrm{b} \text { and } \mathrm{b}=\mathrm{c} \text {, then } \mathrm{a} \\ =\mathrm{c} \end{gathered}$	$\begin{gathered} \text { If } x=y-3 \text { and } y-3=8, \\ \text { then } x=8 . \end{gathered}$
Reflexive Property	a number equals itself	$\mathrm{a}=\mathrm{a}$	$12=12$
Symmetric Property		If $\mathrm{a}=\mathrm{b}$, then $\mathrm{b}=\mathrm{a}$	

Substitution Property		If $\mathrm{a}=\mathrm{b}$, then a may be replaced by b	
Distributive Property	used to find the product of a sum or a difference	$\mathrm{a}(\mathrm{b}+\mathrm{c})=\mathrm{ab}+\mathrm{ac}$ $(\mathrm{b}+\mathrm{c}) \mathrm{a}=\mathrm{ba}+\mathrm{ca}$ $\mathrm{a}(\mathrm{b}-\mathrm{c})=\mathrm{ab}-\mathrm{ac}$ (b-c)a$=\mathrm{ba}-\mathrm{ca}$	$-2 x(x-4)=-2 x^{2}+8 x$
Zero Product Property	If the product of two terms or expression is 0, then either of the terms or expressions must equal 0.	If $(a)(b)=0$, then $a=0$ or $b=0$.	If $(x-3)(x+7)=0$, then $x-3=0$ or $x+7=0$.

