Chart of Properties

Property	Description	Algebra	Example
Commutative Property of Addition	the order in which you add two numbers doesn't matter	a + b = b + a	x + 5 = 5 + x
Commutative Property of Multiplication	the order in which you multiply two numbers doesn't matter	$a \cdot b = b \cdot a$	(x)(3) = 3x
Associative Property of Addition	the grouping of three numbers in a sum doesn't matter	(a + b) + c = a + (b + c)	(2x + 4) + 1 = 2x + (4 + 1)
Associative Property of Multiplication	the grouping of three numbers in a product doesn't matter	$(\mathbf{a} \cdot \mathbf{b}) \cdot \mathbf{c} = \mathbf{a} \cdot (\mathbf{b} \cdot \mathbf{c})$	(2x)y = 2(xy)
Identity Property of Addition	the sum of a number and 0 is the number	a+0=a	-6 + 0 = -6
Identity Property of Multiplication	the product of a number and 1 is the number	$a \cdot 1 = a$	$1\left(\frac{3}{4}\right) = \frac{3}{4}$
Inverse Property of Addition	the sum of a number and its opposite is zero	a + (-a) = 0	12 + (-12) = 0
Inverse Property of Multiplication	the product of a non-zero number and its multiplicative inverse is 1	$a \cdot \frac{1}{a} = 1$	$3 \cdot \frac{1}{3} = 1$
Multiplicative Property of 0	the product of a number and 0 is 0	$\mathbf{a} \cdot 0 = 0$	$15 \cdot 0 = 0$
Addition Property of Equality	any number added to one side of an equation must also be added to the other side	a = b $a + c = b + c$	x - 4 = 16 x - 4 + 4 = 16 + 4
Subtraction Property of Equality	any number subtracted from one side of an equation must also be subtracted from the other	a = b $a - c = b - c$	x + 17 = -2 $x + 17 - 17 = -2 - 17$
Multiplication Property of Equality	any number multiplied on one side of the equation must also be multiplied on the other	$a = b$ $a \cdot c = b \cdot c$	$\frac{x}{5} = 12$ $\left(\frac{x}{5}\right)(5) = (12)(5)$
Division Property of Equality	any number divided from one side of the equation must also be divided from the other	$a = b$ $\frac{a}{c} = \frac{b}{c}$	$-3x = 57 \\ -3x = \frac{57}{-3}$
Transitive Property of Equality		If $a = b$ and $b = c$, then $a = c$	If $x = y - 3$ and $y - 3 = 8$, then $x = 8$.
Reflexive Property	a number equals itself	a = a	12 = 12
Symmetric Property		If $a = b$, then $b = a$	

Substitution Property		If a = b, then a may be replaced by b	
Distributive Property	used to find the product of a sum or a difference	a(b + c) = ab + ac $(b + c)a = ba + ca$ $a(b - c) = ab - ac$ $(b - c)a = ba - ca$	$-2x(x-4) = -2x^2 + 8x$
Zero Product Property	If the product of two terms or expression is 0, then either of the terms or expressions must equal 0.	If $(a)(b) = 0$, then $a = 0$ or $b = 0$.	If $(x-3)(x+7) = 0$, then $x-3 = 0$ or $x+7 = 0$.